Solution Behavior and Activity of a Halophilic Esterase under High Salt Concentration

نویسندگان

  • Lang Rao
  • Xiubo Zhao
  • Fang Pan
  • Yin Li
  • Yanfen Xue
  • Yanhe Ma
  • Jian R. Lu
چکیده

BACKGROUND Halophiles are extremophiles that thrive in environments with very high concentrations of salt. Although the salt reliance and physiology of these extremophiles have been widely investigated, the molecular working mechanisms of their enzymes under salty conditions have been little explored. METHODOLOGY/PRINCIPAL FINDINGS A halophilic esterolytic enzyme LipC derived from archeaon Haloarcula marismortui was overexpressed from Escherichia coli BL21. The purified enzyme showed a range of hydrolytic activity towards the substrates of p-nitrophenyl esters with different alkyl chains (n = 2-16), with the highest activity being observed for p-nitrophenyl acetate, consistent with the basic character of an esterase. The optimal esterase activities were found to be at pH 9.5 and [NaCl] = 3.4 M or [KCl] = 3.0 M and at around 45 degrees C. Interestingly, the hydrolysis activity showed a clear reversibility against changes in salt concentration. At the ambient temperature of 22 degrees C, enzyme systems working under the optimal salt concentrations were very stable against time. Increase in temperature increased the activity but reduced its stability. Circular dichroism (CD), dynamic light scattering (DLS) and small angle neutron scattering (SANS) were deployed to determine the physical states of LipC in solution. As the salt concentration increased, DLS revealed substantial increase in aggregate sizes, but CD measurements revealed the maximal retention of the alpha-helical structure at the salt concentration matching the optimal activity. These observations were supported by SANS analysis that revealed the highest proportion of unimers and dimers around the optimal salt concentration, although the coexistent larger aggregates showed a trend of increasing size with salt concentration, consistent with the DLS data. CONCLUSIONS/SIGNIFICANCE The solution alpha-helical structure and activity relation also matched the highest proportion of enzyme unimers and dimers. Given that all the solutions studied were structurally inhomogeneous, it is important for future work to understand how the LipC's solution aggregation affected its activity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Natural protein engineering: a uniquely salt-tolerant, but not halophilic, alpha-type carbonic anhydrase from algae proliferating in low- to hyper-saline environments.

Dunaliella salina is a unicellular green alga thriving in environments ranging from fresh water to hyper-saline lakes, such as the Dead Sea. An unusual, internally duplicated, 60 kDa alpha-type carbonic anhydrase (dCA I), located on the surface of this alga, is expected to function over a broad range of salinities. It would therefore differ from other carbonic anhydrases that already lose activ...

متن کامل

Isolation of Halophilic Bacteria from Maharlu salt Lake - Iran and their evaluation for the production of bioactive compounds

Halophilic bacteria grow over a wide range of salt concentrations. In this study we aimed to isolate and screen out the halophilic bacteria and to determine their activity for production of the bioactive compounds. A total of 50 water, sediments and soil samples were collected from Maharlu salt lake in southern region of Fars-Iran and subjected for isolation of the bioactive compound producing ...

متن کامل

Malate dehydrogenase isolated from extremely halophilic bacteria of the Dead Sea. 2. Effect of salt on the catalytic activity and structure.

The enzymatic activity and structural stability of the extremely halophilic enzyme malate dehydrogenase (EC 1 . I . I .37) isolated from Dead Sea halobacteria depend in a different way on the concentration of inorganic salts. At low salt concentration (<2.0 M NaCI) the enzyme is inactivated in a first-order reaction. When the salt concentration is increased the inactivated enzyme is reactivated...

متن کامل

DNA Binding in High Salt: Analysing the Salt Dependence of Replication Protein A3 from the Halophile Haloferax volcanii

Halophilic archaea maintain intracellular salt concentrations close to saturation to survive in high-salt environments and their cellular processes have adapted to function under these conditions. Little is known regarding halophilic adaptation of the DNA processing machinery, particularly intriguing since protein-DNA interactions are classically salt sensitive. To investigate such adaptation, ...

متن کامل

Effect of chitosan on antioxidant enzyme activity, proline, and malondialdehyde content in Triticum aestivum L. and Zea maize L. under salt stress condition

Triticum aestivum L. and Zea maize L. are both sensitive to salinity stress which is a major problem faced by farmers today. In the present study, the effect of chitosan, a biologic elicitor under salinity stress was examined on growth parameters and biochemical markers in maize and wheat s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2009